Quasi-isometries and Amalgamations of Tame Combable Groups
نویسنده
چکیده
We study the property of tame combability for groups. We show that quasi-isometries preserve this property. We prove that an amalgamation, A ∗C B, where C is finitely generated, is tame combable iff both A and B are. An analogous result is obtained for HNN extensions. And we show that all one-relator groups are tame combable.
منابع مشابه
Tame filling invariants for groups
A new pair of asymptotic invariants for finitely presented groups, called intrinsic and extrinsic tame filling functions, are introduced. These filling functions are quasi-isometry invariants that strengthen the notions of intrinsic and extrinsic diameter functions for finitely presented groups. We show that the existence of a (finite-valued) tame filling function implies that the group is tame...
متن کاملTame combings, almost convexity and rewriting systems for groups
A finite complete rewriting system for a group is a finite presentation which gives an algorithmic solution to the word problem. Finite complete rewriting systems have proven to be useful objects in geometric group theory, yet little is known about the geometry of groups admitting such rewriting systems. We show that a group G with a finite complete rewriting system admits a tame 1-combing; it ...
متن کاملRigidity of quasi-isometries for symmetric spaces and Euclidean buildings
for all x ∈ X . Quasi-isometries occur naturally in the study of the geometry of discrete groups since the length spaces on which a given finitely generated group acts cocompactly and properly discontinuously by isometries are quasi-isometric to one another [Gro]. Quasi-isometries also play a crucial role in Mostow’s proof of his rigidity theorem: the theorem is proved by showing that equivaria...
متن کاملGroup Splittings and Asymptotic Topology
It is a consequence of the theorem of Stallings on groups with many ends that splittings over finite groups are preserved by quasi-isometries. In this paper we use asymptotic topology to show that group splittings are preserved by quasi-isometries in many cases. Roughly speaking we show that splittings are preserved under quasi-isometries when the vertex groups are fundamental groups of aspheri...
متن کاملar X iv : m at h / 02 01 31 2 v 1 [ m at h . G R ] 3 1 Ja n 20 02 GROUP SPLITTINGS AND ASYMPTOTIC TOPOLOGY
It is a consequence of the theorem of Stallings on groups with many ends that splittings over finite groups are preserved by quasi-isometries. In this paper we use asymptotic topology to show that group splittings are preserved by quasi-isometries in many cases. Roughly speaking we show that splittings are preserved under quasi-isometries when the vertex groups are fundamental groups of aspheri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 5 شماره
صفحات -
تاریخ انتشار 1995